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Research Question
!
“how to reliably predict the call volumes on daily level and on 
half-hourly level for each urgency type and combination of 
urgency types for the Amsterdam area and its Ambulance 
Service Providers (ASPs) base locations?”



Data
▪ Source: Meldkamer Amsterdam 

▪ Range: 01-01-2009 to 30-04-2012 

▪ Urgency types: 
▪ A1: the most urgent call with an 

acute threat of patient’s life.  
▪ A2: less urgent than A1. 

Patient’s life not under direct 
threat, but there might be 
serious injuries. 

▪ B: Not an A1 or A2. Are planned 
in advance. 

▪ Base locations



Data pre-processing
Outliers: historical average based on past data 
!
Example: A1 daily call volume of the Amsterdam region 
!
!
!
!
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Seasonality: intra-week



Forecasting Models: daily level
▪ Multiplicative model 
▪ Adjusted multiplicative model (adj.M) 
▪ Innovation state space models (ISS) 
▪ Trigonometric exponential smoothing models 

(TBATS)
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Multiplicative Model

▪ Assumption: constant probabilities over 
time
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Adjusted Multiplicative Model

▪ Adj-M: the forecast from the multiplicative model 
was improved by adding an average percentage 
difference between the realised and the old forecast 
using different adjustment horizons



Adjusted Multiplicative
Example: A1 of the Amsterdam region (1week)
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Innovations State Space Models

▪ Assumption: the development of the time series over 
time is determined by an unobserved series of 
vectors with which are associated a series of 
observations (Koopman et al., 2002) 

▪ The innovations of the unobserved state component 
as well as the observation are driven by the same 
disturbance 

▪ Hyndman et al. (2002) derived the ISS formulation 
for different exponential smoothing methods and 
implement these methods in the “Forecast” package 
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Trigonometric Exponential Smoothing Models 
(TBATS)

Introduced by The Livera et al. (2001): 
▪ Allow forecasting time series with complex 

seasonal pattern (e.g: multiple seasonal 
patterns, non integer seasonality) 

▪ Consider only linear homoskedastic models 
▪ Allow non-linearity’s using Box-Cox 

transformation 
▪ Permits the seasonal components to be 

approximated by the sum of sine and cosine 
functions



Model Comparison
▪ Performance on different forecasting horizons



Conclusions
▪ Preliminary analysis: 

▪ Extreme observations on Queen’s day, New year’s Eve, 
days with extreme weather conditions, and special 
events (national football team plays) 

▪ No extreme observations on other special days that are 
defined by the MKA like Christmas 

▪ Strong intra-day and intra-week seasonality 



Conclusions (cont.)
▪ Modelling: 

▪ Adj-M:  
▪ Good performance on different forecasting horizons (1W, 

2W, 1M)  
▪ Similar performance to TBATS on the forecasting horiz. of 

6M 
▪ Well specified models 
▪ Conservative on half-hourly level 
▪ Provides good forecasts for special days except Queen’s 

day and New Year Eve



Suggestions for further researchSuggestions for further research
!
▪ Compute confidence levels instead of upper bounds for the 

adj-M model 
▪ Explain call volume data using weather data 
▪ Investigate the causes of misspecification of the TBATS 

models as they provide competitive results to the adj_M 
model 

▪ Using spatio-temporal models that take time and space 
into account



Questions
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Multiplicative Model

Where:
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Adjusted Multiplicative Model
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Innovations State Space Models
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Trigonometric Exponential Smoothing Models 
(TBATS)



Innovations State Space Models 
Example: A1 of the Amsterdam region (MNA)  

!
!
!
!
!
!
!
!
▪Results:  

▪ In general, similar performance as the adj-M model on workdays data 
▪ Perform poorly on weekends data 
▪ Most selected models were not well specified



TBATS 
▪ Example: A1 of the Amsterdam region 
!
!
!
!
!

!
!
▪ Results:  

▪ In general, similar performance as the adj-M 
▪ Not well specified models 
▪ Underestimate the call volume


